关于我们
客户地区分类案例行业分类
客户案例

pagerank原理有哪些?

    通过对由超过 50,000 万个变量和 20 亿个词汇组成的方程进行计算,PageRank 能够对网页的重要性做出客观的评价。PageRank 并不计算直接链接的数量,而是将从网页 A 指向网页 B 的链接解释为由网页 A 对网页 B 所投的一票。这样,PageRank 会根据网页 B 所收到的投票数量来评估该页的重要性。
  此外,PageRank 还会评估每个投票网页的重要性,因为某些网页的投票被认为具有较高的价值,这样,它所链接的网页就能获得较高的价值。重要网页获得的 PageRank(网页排名)较高,从而显示在搜索结果的顶部。Google 技术使用网上反馈的综合信息来确定某个网页的重要性。搜索结果没有人工干预或操纵,这也是为什么 Google 会成为一个广受用户信赖、不受付费排名影响且公正客观的信息来源。
  其实说白了就是民主表决。打个比方,假如我们要找李开复博士,有一百个人举手说自己是李开复。那么谁是真的呢?也许有好几个真的,但即使如此谁又是大家真正想找的呢?:-) 如果大家都说刚从 Google 离职的那个是真的,那么他就是真的。
  在互联网上,如果一个网页被很多其它网页所链接,说明它受到普遍的承认和信赖,那么它的排名就高。这就是 Page Rank 的核心思想。 当然 Google 的 Page Rank 算法实际上要复杂得多。比如说,对来自不同网页的链接对待不同,本身网页排名高的链接更可靠,于是给这些链接予较大的权重。Page Rank 考虑了这个因素,可是现在问题又来了,计算搜索结果的网页排名过程中需要用到网页本身的排名,这不成了先有鸡还是先有蛋的问题了吗?
  Google 的两个创始人拉里•佩奇 (Larry Page )和谢尔盖•布林 (Sergey Brin) 把这个问题变成了一个二维矩阵相乘的问题,并且用迭代的方法解决了这个问题。他们先假定所有网页的排名是相同的,并且根据这个初始值,算出各个网页的第一次迭代排名,然后再根据第一次迭代排名算出第二次的排名。他们两人从理论上证明了不论初始值如何选取,这种算法都保证了网页排名的估计值能收敛到他们的真实值。值得一提的事,这种算法是完全没有任何人工干预的。
  理论问题解决了,又遇到实际问题。因为互联网上网页的数量是巨大的,上面提到的二维矩阵从理论上讲有网页数目平方之多个元素。如果我们假定有十亿个网页,那么这个矩阵 就有一百亿亿个元素。这样大的矩阵相乘,计算量是非常大的。拉里和谢尔盖两人利用稀疏矩阵计算的技巧,大大的简化了计算量,并实现了这个网页排名算法。今天 Google 的工程师把这个算法移植到并行的计算机中,进一步缩短了计算时间,使网页更新的周期比以前短了许多。
  网页排名的高明之处就是它把整个互联网当作了一个有机的整体。它无意识中符合了系统论的观点。相比之下,以前的信息检索大多把每一个网页当作独立的个体对待,很多人当初只注意了网页内容和查询语句的相关性,忽略了网页之间的关系。
  今天,Google 搜索引擎比最初复杂、完善了许多。但是网页排名在 Google 所有算法中依然是至关重要的。在学术界, 这个算法被公认为是文献检索中最大的贡献之一,并且被很多大学引入了信息检索课程 (Information Retrieval) 的教程。

返回